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Abstract—Krylov subspace projection methods are widely
used iterative methods for solving large-scale linear systems of
equations. Researchers have demonstrated that communication-
avoiding (CA) techniques can improve Krylov methods’ perfor-
mance on modern computers, where communication is becoming
increasingly expensive compared to arithmetic operations. In
this paper, we extend these studies by two major contributions.
First, we present our implementation of a CA variant of the
Generalized Minimum Residual (GMRES) method, called CA-
GMRES, for solving nonsymmetric linear systems of equations
on a hybrid CPU/GPU cluster. Our performance results on up to
120 GPUs show that CA-GMRES gives a speedup of up to 2.5x
in total solution time over standard GMRES on a hybrid cluster
with twelve Intel Xeon CPUs and three Nvidia Fermi GPUs on
each node. We then outline a domain decomposition framework
to introduce a family of preconditioners that are suitable for CA
Krylov methods. Our preconditioners do not incur any additional
communication and allow the easy reuse of existing algorithms
and software for the subdomain solves. Experimental results
on the hybrid CPU/GPU cluster demonstrate that CA-GMRES
with preconditioning achieve a speedup of up to 7.4x over CA-
GMRES without preconditioning, and speedup of up to 1.7x over
GMRES with preconditioning in total solution time. These results
confirm the potential of our framework to develop a practical
and effective preconditioned CA Krylov method.

I. INTRODUCTION

On modern computers, communication is becoming increas-
ingly expensive compared to arithmetic operations in terms
of throughput and energy consumption. “Communication”
includes data movement or synchronization between parallel
execution units, as well as data movement between levels of
the local memory hierarchy. To address this hardware trend, re-
searchers have been studying techniques to avoid communica-
tion in Krylov subspace projection methods, a popular class of
iterative methods for solving large-scale sparse linear systems
of equations and eigenvalue problems. Effectiveness of such
communication-avoiding (CA) techniques [9], [3] to improve
the performance of Krylov methods has been demonstrated on
shared-memory multicore CPUs [10], on distributed-memory
CPUs [19], and on multiple graphics processing units (GPUs)
on a single compute node [17]. In this paper, we extend
these studies and show the performance of a CA variant of

the Generalized Minimum Residual (GMRES) method [13]
for solving a nonsymmetric linear system of equations on a
hybrid CPU/GPU cluster. Our performance results on up to
120 GPUs demonstrate speedups of up to 2.5x.

The CA Krylov methods were originally proposed as s-
step methods over thirty years ago [16], but they have not
been widely adopted in practice. One reason for this is that,
in practice, Krylov methods depend on preconditioning to
accelerate their convergence rate, but no effective precon-
ditioners have been shown to work seamlessly with a CA
method. This is partially because the existing CA precondi-
tioning techniques revoke one of the most attractive features
of Krylov methods, namely that they require no knowledge of
the internal representation of the coefficient matrix A or of any
preconditioners. In fact, most of the existing implementations
of the Krylov methods only require two independent “black-
box” routines, one for sparse-matrix vector product (SpMV)
and the other for preconditioning (Preco). This black-box
feature makes it easy to use any exisiting algorithm or software
for Preco in the Krylov methods, and also to test a new
preconditioning technique. The CA Krylov methods introduce
a new computational kernel, matrix powers kernel (MPK),
that replaces SpMV and generates a set of Krylov subspace
basis vectors all at once [9]. Then, all the existing techniques
for preconditioning a CA method require close integration of
Preco with SpMV within MPK, violating this handy black-box
feature and making it difficult to test and develop an effective
preconditioner.

To fill this crucial gap, in this paper, we propose a domain
decomposition framework to develop an effective CA precon-
ditioning technique. Our preconditioner may be considered as
a variant of an additive Schwarz preconditioner, modified to
ensure consistent interfaces between the subdomains without
additional communication beyond what MPK already needs.
However, more importantly, since we rely on domain de-
composition, our preconditioner is not tightly coupled with
SpMV. Hence, beside adding the local solver to apply the
preconditioner to a local vector, our framework does not
require any changes to MPK, and it can use any existing
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solver or preconditioner software package as the local solver
on each subdomain. In other words, our CA preconditioner
does not force any change to the sparse matrix’s data structure
or constrain the sparsity pattern of the subdomain solver. It
thus defines a new category of CA preconditioning techniques.
To study the proposed framework’s performance, we combine
this with CA-GMRES on a hybrid CPU/GPU cluster. Though
this is merely our initial implementation, our experimental
results on up to 30 GPUs show that CA-GMRES with pre-
conditioning can obtain speedups of 7.4x over CA-GMRES
without preconditioning, and speedups of 1.7x over GMRES
with preconditioning.

In addition to demonstrating the potential of our framework,
our current studies illustrate the importance and the challenge
of developing such preconditioning techniques. Moreover, in
this paper, we focus on CA-GMRES because we know from
past experience [17] how to implement it efficiently and in
a numerically stable way. However, CA variants of short-
recurrence iterations like CG and BiCGSTAB spend much less
time in vector operations than CA-GMRES, and thus, our work
on an effective CA preconditioner may benefit CA versions of
other Krylov methods even more than CA-GMRES.

The rest of the paper is organized as follows. After survey-
ing related work in Section II, we first present, in Section III,
our implementation of CA-GMRES and its performance on
a hybrid CPU/GPU cluster. Then, in Section IV, we describe
our CA preconditioning framework, outline our initial imple-
mentation, and give numerical and performance results on a
hybrid cluster. Section V shows final remarks and future work.

Throughout this paper, we denote the i-th row and the j-
th column of a matrix A by ai,: and a:,j , respectively, while
Aj:k is the submatrix consisting of the j-th through the k-th
columns of A, inclusive, and A(i, j) is the submatrix consisting
of the rows and columns of A that are given by the row
and column index sets i and j, respectively. We use nnz(A)
and |A| to denote the number of nonzeros in the matrix A
and the matrix dimension, respectively. All the experiments
were conducted on the Keeneland system1 at the Georgia
Institute of Technology. Each of its compute nodes consists
of two six-core Intel Xeon CPUs and three NVIDIA M2090
GPUs, with 24GB of main CPU memory per node and 6GB of
memory per GPU. We used the GNU gcc 4.4.6 compiler and
CUDA nvcc 5.0 compiler with the optimization flag -O3,
and linked with Intel’s Math Kernel Library (MKL) version
2011 sp1.8.273 and OpenMPI 1.6.1. The test matrices used
for our experiments are listed in Figure 9.

II. RELATED WORK

Most existing CA preconditioning techniques fall into one
of two categories [9]. The first category naturally fits how CA
methods compute sparse matrix-vector products. In contrast,
the second class of exisiting CA preconditioners require radi-
cal changes to the representation of both the sparse matrix A
and its preconditioner, such that their off-diagonal blocks are

1http://keeneland.gatech.edu/KDS

stored using a low rank representation. To the best of our
knowledge, there is no implementation or empirical evalua-
tion of such CA preconditioners. Furthermore, most users of
Krylov solvers may not wish to make such radical changes
to their data structures. Hence, for the rest of this section, we
focus on the preconditioners in the first category.

The CA preconditioners in the first category include pre-
conditioners like sparse approximate inverses with the same
sparsity pattern as the matrix A, or block Jacobi and poly-
nomial preconditioners [5], [15], [16]. For instance, in block
Jacobi preconditioning, each processor (or GPU) indepen-
dently solves its local problem. For a conventional Krylov
method, this block Jacobi without overlap does not require any
additional communication. However, even this is difficult to
integrate into a CA method since after Preco, each local SpMV
requires from its neighbors the preconditioned input vector el-
ements on its interface, introducing extra communication. De-
pending on the sparsity structure of the matrix, a CA method
may require significantly greater communication in order to
use block Jacobi preconditioner. See [7, Chapter 7] for an
illustration of this increasing communication requirement for
a tridiagonal matrix that would result from a finite difference
discretization of Poisson’s equation with Dirichlet boundary
conditions on a finite 1D domain. Previous authors proposed
block Jacobi preconditioner, apparently without realizing the
challenge of implementating it for a CA method. This was a
surprising result that stirred us to develop the preconditioner
framework presented in this paper. In Section IV, we discuss
more details of these challenges.

For some types of problems, these preconditioners of the
first category are not only difficult to integrate in a CA method,
but it also may be only moderately effective in improving the
convergence rate or in exploiting parallelism, or may intro-
duce a significant overhead in computation or communication,
depending on the sparsity structure of A. For example, the
effectiveness of polynomial preconditioning, like that proposed
in [12], to reduce the iteration count tends to decrease with
the degree of the polynomial, while its computational cost
increases. A recently proposed CA preconditioning technique
based on an incomplete LU factorization, CA-ILU(0) [8], can
be considered as an advanced member of this first category.
Though CA-ILU(0) uses special global nested dissection or-
dering to limit the amount of required communication, the
authors’ experiments focus on structured grids, while leaving
the extension to unstructured meshes as future work. Since
no implementation of CA-ILU(0) is currently available, we
postpone the empirical comparisons as our future study. We
expect CA-ILU(0) would be more effective for a numerically
difficult problem where the ILU(0) factors of the coefficient
matrix can be partitioned well. However, CA-ILU(0) requires
the ghosting of twice as many boundary layers, and our method
may be more practical for a matrix with large separators.

Another critical aspect of these preconditioners in the first
category is that they are still closely integrated with MPK.
Hence, these preconditioners often require significant changes
in how MPK interacts with the input vectors, and are designed
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GMRES(A, M , b, m):
repeat (restart-loop)

1. Generate Krylov Basis: O(m · nnz(|A| + |M|) + m2n) flops on the GPUs.

q:,1 = q:,1/∥q:,1∥2 (with x̂ = 0 and q:,1 = b, initially)
for j = 1, 2, . . . ,m do
1.1. Preconditioner (Preco) Application:

z:,j := M−1q:,j

1.2. Sparse Matrix-Vector (SpMV) Product:
q:,j+1 := Az:,j

1.3. Orthonormalization (Orth):
q:,j+1 := (q:,j+1 −Q1:jh1:j,j)/hj+1,j ,
where h1:j,j = QT

1:jq:,j+1 and
hj+1,j = ∥q:,j+1 −Q1:jh1:j,j∥2.

end for

2. Solve Projected Subsystem: O(m2) flops on the CPUs and O(nm) flops on the GPUs.

2.1. solve the least-squares problem g = mint ∥Ht−QT
1:m+1r∥2

where r = b− Ax̂
2.2. to update solution x̂ = x̂ + Z1:mg
2.3. restart with q:,1 = b− Ax̂

until solution convergence

Fig. 1. Pseudocode of GMRES on CPU/GPU. m is the restart length.

for specific types of preconditioners (e.g., approximate inverse
or ILU(0)). On contrary, in this paper, we provide a framework
that decouples Preco from SpMV and allows us to use any
exisiting preconditioning software as a black-box routine for
preconditioning CA methods.

III. CA-GMRES ON A HYBRID CPU/GPU CLUSTER

A. CA-GMRES Algorithm

The Generalized Minimum Residual (GMRES) method [13]
is a Krylov subspace method for solving a nonsymmetric linear
system. Its solution minimizes the residual norm over the
generated projection subspace at each iteration. GMRES’ j-th
iteration first generates a new basis vector q:,j+1 by applying
the preconditioner (Preco) to the previously orthonormalized
basis vector q:,j , followed by the sparse-matrix vector prod-
uct (SpMV) (i.e., z:,j := M−1q:,j and q:,j+1 := Az:,j).
Then, the new orthonormal basis vector is computed by
orthonormalizing (Orth) the resulting vector q:,j+1 against the
previously orthonormalized basis vectors q:,1,q:,2, . . . ,q:,j .

To reduce both the computational and storage require-
ments of computing a large projection subspace, users of-
ten restart GMRES after computing a fixed number m + 1
of basis vectors. Before restart, GMRES updates the ap-
proximate solution x̂ by solving a least-squares problem
g := argmint ∥c−Ht∥, where c := QT

1:m+1(b − Ax̂),
H := QT

1:m+1AZ1:m, and x̂ := x̂ + Z1:mg. The matrix H ,
a by-product of the orthogonalization procedure, has upper
Hessenberg form. Hence, the least-squares problem can be ef-
ficiently solved, requiring only about 3(m+1)2 flops. For an n-
by-n matrix A with nnz(A) nonzeros, and a preconditioner M
whose application requires nnz(M) flops, SpMV, Preco, and
Orth require a total of about 2m · nnz(|A|), 2m · nnz(|M |),
and 2m3n flops over the m iterations, respectively (i.e.,
n, nnz(A), nnz(M) ≫ m). Figure 1 shows pseudocode for
restarted GMRES.

Both SpMV and Orth require communication. This includes
point-to-point messages or neighborhood collectives for SpMV,

CA-GMRES(A, M , b, s, m):
repeat (restart-loop)

1. Generate Krylov Basis: O(m · nnz(|A| + |Mj |) + m2n) flops on the GPUs.

q:,1 = q1/∥q:,1∥2 (with x̂ = 0 and q:,1 = b, initially)
for j = 1, 1 + s, . . . ,m do
1.1. Matrix Powers Kernel (MPK):

for k = j + 1, j + 2, . . . , j + s do
z:,k := M−1q:,k (Preco)
q:,k+1 := Az:,k (SpMV)

end for
1.2. Block Orthonormalization (BOrth):

orthogonalize Qj+1:j+s against Q1:j

1.3. Tall-Skinny QR (TSQR) factorization:
orthonormalizing Qj+1:j+s against each other

end for

2. Solve Projected Subsystem: O(m2) flops on the CPUs and O(nm) flops on the GPUs.

2.1. solve the least-squares problem g = mint ∥Ht−QT
1:m+1r∥2,

where r = b− Ax̂
2.2. update solution x̂ = x̂ + Z1:mg
2.3. restart with q:,1 = b− Ax̂

until solution convergence

Fig. 2. Pseudocode of CA-GMRES on CPU/GPU. s is the MPK basis length
and m is the restart length.

and global all-reduces in Orth, as well as data movement
between levels of the local memory hierarchy (for reading
the sparse matrix and for reading and writing vectors, as-
suming they do not fit in cache). Communication-Avoiding
GMRES (CA-GMRES) aims to reduce this communication
by redesigning the algorithm to replace SpMV and Orth with
three new kernels – MPK, BOrth, and TSQR – that generate
and orthogonalize a set of s basis vectors all at once. In theory,
CA-GMRES communicates no more than a single GMRES
iteration (plus a lower-order term), but does the work of s
iterations. In Section IV, we propose a preconditioning tech-
nique that can be integrated into MPK without incurring any
additional communication phases. Figure 2 shows pseudocode
for restarted CA-GMRES.

B. CA-GMRES Implementation

Our CA-GMRES implementation on a hybrid CPU/GPU
cluster extends our previous implementation on a multicore
CPU with multiple GPUs on one node [17]. Namely, to
utilize the multiple GPUs, we distribute the matrix A over the
GPUs in a 1D block row format, using a matrix reordering
or graph partitioning algorithm (see Section IV-B). The basis
vectors q1,q2, . . . ,qs+1 are then distributed in the same
format. Since CA-GMRES’ computational cost is typically
dominated by the first step of generating the basis vectors,
we accelerate this step using GPUs, while the second step of
solving the least squares problem is redundantly performed
by each MPI process on CPU. On a hybrid CPU/GPU cluster
with multiple GPUs on each node, a single MPI process can
manage multiple GPUs on the node in order to combine or
avoid the MPI communication to the GPUs on the same node.
For the remaining of the paper, we use A(d) and Q(d) to denote
the local matrices on the d-th GPU, while ng is the number
of available GPUs.
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Fig. 4. Illustration of Extending and Sorting a Local Matrix for MPK (s = 2).
The local subdomain is colored in light orange, while the vertices in the same
color belong to either the underlap or overlap of the same level.

C. Orthogonalization Kernels

In our previous study [17], we investigated the performance
of several orthogonalization procedures on multiple GPUs on a
single compute node. In most cases in that study, CA-GMRES
obtained the best performance using classical Gram-Schmidt
(CGS) [1] and Cholesky QR (CholQR) [14] for BOrth and
TSQR, respectively. Hence, in this paper, we use CGS-based
BOrth and CholQR-based TSQR on the hybrid CPU/GPU
cluster as well.

In CholQR, each GPU first computes the block dot products
of its local vectors (i.e., B(d) := Q(d)T

1:s+1Q
(d)
1:s+1), using the

optimized GPU kernels developed in [17], [18], and asyn-
chronously copies the result to its MPI process. Second,
the MPI process accumulates the results of its local GPUs,
and computes the Gram matrix via a global MPI all-reduce
(i.e., B =

∑ng

d=1 B
(d)). Third, each MPI process redundantly

computes the Cholesky factorization of the Gram matrix on
the CPUs (i.e., RRT := B), and broadcasts the Cholesky
factor R to its local GPUs. Finally, each GPU orthogonalizes
the local part of the basis vectors through a triangular solve
(i.e., Q(d)

1:s+1 := Q(d)
1:s+1R

−1). Figure 3 illustrates this process.
CGS is implemented similarly, and is based on optimized

matrix-matrix multiplies on a GPU and orthogonalizes the next
set of columns against all the previous columns at once [17].

D. Matrix Powers Kernel

We denote the local submatrix assigned to the d-th GPU
by Ā(d), and reorder the rows of Ā(d) in the descending order
of their edge distances from the subdomain boundary in the
adjacency graph of A. We then expand the local submatrix
to include the nonlocal entries that are at most ℓ edges away
from the local matrix for ℓ = 1, 2, . . . , s. More specifically,
for ℓ > 0, let δ(d,ℓ) be the set of the nonlocal vertices whose

shortest path from a local vertex is of length ℓ, while for
ℓ < 0, δ(d,ℓ) is the set of the local vertices whose shortest
path from a nonlocal vertex is of length ℓ (see Figure 4 for
an illustration). Then, the d-th GPU owns its extended local
submatrix Ā(d,s) = A(i(d,s), :), where i(d,s) =

⋃
ℓ≤s δ

(d,ℓ) and
the row index set i(d,s) is sorted such that those row indexes in
δ(d,ℓ) with a smaller ℓ come first. For example, in Figure 4, we
store the block rows of the local submatrix, that are colored in
gray, red, orange, dark blue, and then light blue in that order.
For the rest of the paper, we let ℓ > 0, and refer to δ(d,−ℓ)

and δ(d, ℓ) as the ℓ-level underlap and overlap, respectively,
of the d-th subdomain.

When applying MPK, each GPU first exchanges all the
required vector elements to compute s matrix powers with its
neighboring GPUs distributed over different MPI processes. To
this end, each GPU first packs its local vector elements that
are needed by the neighboring GPUs into a buffer, which is
then asynchronously copied to the CPU. Once the MPI process
receives the message from its GPU, it expands it into a full-
length vector. After expanding the messages from all the local
GPUs, the MPI process packs the vector elements required by
another GPU into a single message, and asynchronously sends
it to the corresponding MPI process. Finally, when the MPI
process receives a message from another process, it expands
the messages into a full-length vector, and after expanding all
the messages, it packs and copies the required elements to
its GPUs, which then expand the packed elements into their
full-length vectors (see Figure 5 for the pseudocode).2 After
this inter-GPU communication, each GPU computes the k-th
matrix power by independently invoking Preco and SpMV with
the k-th extended local matrix Ā(d,ℓ) without further inter-
GPU communication, where ℓ = s− k+1 for k = 1, 2, . . . , s
(see Step 1.1 in Figure 2).

A larger step size s increases the computational and storage
overheads of MPK, and may increase its communication
volume. As a result, the optimal value of s for MPK may be
smaller than the optimal s for BOrth or TSQR. This has been
also observed in [10], where in some cases, MPK’s optimal
step size was one. In addition, as we will discuss in Section IV,
the quality of our CA preconditioner can degrade with a larger
value of s. It thus becomes critical to use a relatively small s
for Preco, especially with a large number of subdomains, or
equivalently on a large number of GPUs (see Section IV-B for
our choice of s). To improve the performance of CA-GMRES,
our implementation can use different values of s for MPK,
and for BOrth and TSQR [18]. Hence, our implementation
can take three input parameters, CA-GMRES(s, ŝ,m), where
s and ŝ are the step sizes used for MPK and for BOrth and
TSQR, respectively, and m is the restart length. The special
case of s = 1 means that CA-GMRES does not need a
specialized MPK implementation; it merely uses the standard
SpMV, and relies on CA-GMRES’ orthogonalization kernels

2When we have more CPU cores than GPUs on a node, we assign multiple
cores to each MPI process which can then process the messages from multiple
GPUs in parallel using Pthreads.
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Setup: exchange elements of local q(d)
:,1 to form global q(d,s)

:,1
// GPU-to-CPU communication, using CUDA
for each local d-th GPU do

compress elements of q(d)
:,1 needed by other GPUs into w(d)

asynch-send of w(d) to this MPI process
end for
for each local d-th GPU do

wait and expand w(d) into a full vector w on CPU
end for
// CPU-to-CPU communication, using MPI
for each non-local d-th GPU do

if any of local elements is needed by d-th GPU then
compress elements of w required by d-th GPU into w(d)

asynch-send of w(d) to the MPI process owning d-th GPU
end if
if any local elements of d-th GPU is needed by local GPUs then

asynch-receive from the MPI owning d-th GPU into z(d)

end if
end for
for each non-local d-th GPU do

wait and expand z(d) into a full vector z on CPU
end for
// CPU-to-GPU communication, using CUDA
for each local d-th GPU do

compress elements of z required by d-th GPU into z(d)

asynch-send z(d) to d-th GPU
copy the local vector q(d)

:,1 into q
(d,s)

i(d,0),1

expand z(d) into a full vector q(d,s)
:,1

end for

Matrix Powers: generate local q(d)
:,2 ,q

(d)
:,3 , . . . ,q

(d)
:,s+1

for k = 1, 2, . . . , s do
ℓ := s− k + 1
for d = 1, 2, . . . , ng do

Preco: compute z
(d,ℓ)
:,k := (R(d,ℓ))T (M(d,ℓ))−1(R(d,ℓ))q

(d,ℓ)
:,k

SpMV: compute q
(d,ℓ−1)
:,k+1 := (R(d,ℓ−1))T Ā(d,ℓ)(R(d,ℓ))z

(d,ℓ)
:,k

save to the local vector, q(d)
:,k+1 = q

(d,ℓ−1)

i(d,0),k+1
end for

end for
———————————————————————————————–
Notation used for MPK:
δ(d,−ℓ) : local vertices that are ℓ edges away from boundary
δ(d,ℓ) : nonlocal vertices that are ℓ edges away from boundary
δ(d,1:s) : s-level overlap, i.e.,

⋃
ℓ=1,2,...,s δ

(d,ℓ)

i(d,s) : s-level row index set, i.e.,
⋃

ℓ≤s δ
(d,ℓ)

Ā(d,s) : s-level extended local submatrix, i.e., Ā(d,s) = A(i(d,s), :)
Ā(d), : local submatrix on d-th GPU, i.e., Ā(d,0)

A(d,s) : s-level diagonal block, i.e., A(d,s) = A(i(d,s), i(d,s))
R(d,s) : restriction from global domain to s-level local subdomain
M(d,s) : a local preconditioner on square portion of the s-level

extended local submatrix

Fig. 5. Pseudocode of Matrix Powers Kernel, MPK(s, q:,1), where s is the
number of basis vectors that MPK generates.

to improve its performance over GMRES (no communication
is still needed between Preco and SpMV). This is a reasonable
strategy for long-recurrence Krylov solvers like GMRES, but
CA variants of short-recurrence methods like CG spend much
less time in inner products, and may require a larger step size
for the performance improvement.

E. Performance Studies
Figure 6 compares the parallel strong scaling performance

of GMRES and CA-GMRES on up to 120 GPUs by showing
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Fig. 6. Parallel Strong Scaling of CA-GMRES and GMRES on 120
distributed GPUs (over GMRES on one GPU), for the G3_Circuit matrix.

Method No. of GPUs 6 12 24 48
GMRES(30) No. of Restarts 39 35 130 79

Time (s) 3.35 3.13 10.09 7.97
CA-GMRES(1, 30) No. of Restarts 39 35 131 79

Times (s) 1.75 1.64 7.00 4.55
Speedup 1.91 1.91 1.44 1.75

Fig. 7. Parallel Weak Scaling Performance Studies for the brick matrices,
starting with n = 1M on 6 GPUs to n = 8M on 48 GPUs using 3GPUs/MPI.

their total solution time speedups over the time required by
GMRES on one GPU for the G3_Circuit matrix (see Fig-
ure 9 for the properties of our test matrices). The matrix A is
distributed among the GPUs such that each GPU has about an
equal number of rows after the reverse Cuthill-McKee (RCM)
ordering is applied [6] (see Section IV-C for more detailed
experimental setups, except the greater stopping criteria of
10−8 is used here). Assigning one GPU per MPI process (the
blue markers in the figure), CA-GMRES obtained the average
and maximum speedups of 2.06 and 2.53 over GMRES on the
same number of GPUs, respectively. The speedup leveled off
around 60 GPUs because the local submatrix became too small
for the GPU to obtain any strong scaling speedup. On a larger
number of compute nodes, the MPI communication becomes
more dominant, and the speedups obtained by avoiding the
communication may increase [19]. In addition, the orange
markers in the figure show the performance of CA-GMRES
that launches one MPI process on each node and lets each
process manage the three local GPUs on the node. At least in
our experiments, the overhead of each MPI to manage multiple
GPUs (e.g., sequentially launching GPU kernels on multiple
GPUs) outweighed the benefit of avoiding the intra-node
communication, for which many MPI implementations are
optimized. Hence, for the rest of the paper, unless otherwise
specified, we use one MPI process to manage a single GPU.

Figure 7 shows the parallel weak scaling performance of
GMRES and CA-GMRES, where the matrix dimension is
increased linearly with the number of GPUs, starting from
1, 035, 351 on 6 GPUs. To accomodate the large CPU memory
usage during setup on 48 GPUs, we lauched one MPI process
per node and let the process manage three GPUs on the
node. The brick matrices come from the discretization of
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the Poisson’s equation with Dirichlet boundary conditions on
a 3-D brick-shaped mesh, in which the number of elements
in two dimensions are fixed. The third dimension has four
different types of material blocks, two of which have the
element sizes graded. When the problem size increases, the
difficulty of the problem varies depending on the dimension
that was scaled up. This results in the different number of
restarts as we increase the problem size. Again, CA-GMRES
provided better weak scaling than GMRES on this hybrid
CPU/GPU cluster.

IV. CA DOMAIN DECOMPOSITION PRECONDITIONERS

As discussed in Section I, preconditioning CA Krylov
methods is difficult. Instead of forming the basis
vectors for the Krylov subspace Kk(A,q:,1) =
span{q:,1, Aq:,1, . . . , Ak−1q:,1}, we must generate the basis
vectors for the preconditioned subspace Kk(M−1A,q:,1) or
Kk(AM−1,q:,1) (left or right preconditioning, respectively).
The challenge is that to compute the local product with the
k-th matrix power, each processor (or GPU) needs to know
not only its local elements of the input vector at i(d,0) but also
those at the ℓ-level overlap δ(d,1:ℓ), where ℓ = s− k + 1 (for
k = 1, 2, . . . , s). Therefore, when applying the preconditioner
(i.e., z:,k := M−1q:,k and i(d,ℓ) = i(d,0)

⋃
δ(d,1:ℓ)), if

the action of M−1 to generate these vector elements of
z:,k at i(d,ℓ) requires any element of the input vector q:,k

aside from those at the row index set i(d,ℓ), then additional
communication is needed.

A simple preconditioner that works for CA methods is a
diagonal preconditioner. For this, the d-th processor (or GPU)
only needs to know the diagonals of the local submatrix and
the s-level overlap, i.e., diag(A(d,s)). This requires only small
computational and storage overheads, but may only reduce the
iteration count moderately. Real applications often prefer other
types of preconditioners that have higher overheads but are
more effective in reducing the iteration count. These include
preconditioners based on domain decomposition or multigrid.
We focus on domain decomposition preconditioners which are
local in nature, useful in many applications and well suited for
parallel computing.

A. CA-Preconditioning Framework
We now describe our communication avoiding domain de-

composition preconditioners. As explained in Section II, it is
difficult to integrate even a block Jacobi preconditioner into
a CA method, where each processor (or GPU) independently
applies Preco by solving its local problem associated with the
local diagonal block A(d). This is because after the precondi-
tioner is applied, each local SpMV requires from its neighbors
the preconditioned input vector elements on the overlaps,
introducing extra communication. To avoid this additional
communication, we “shrink” the diagonal blocks to make them
disjoint from the s-level overlaps. To define our precondition-
ers, recall our notations in Section III-D; in the view of the
d-th subdomain, the distance-s neighbors of the vertices in
the graph of A is the s-level overlap δ(d,s), while the set of

Interior of 
subdomain 2

s level underlap, 
relative to 
subdomain 1

s level overlap, 
relative to 
subdomain 1

Interior of 
subdomain 1

Fig. 8. Matrix Partitioning for the CA Preconditioner for two subdomains.
The underlap and the overlap relative to subdomain 1 are shown.

local vertices distance-s away from a non-local vertex is the
s-level underlap δ(d,−s). To simplify our notation, when it is
clear from the context, we use i(−ℓ1) and δ(ℓ1:ℓ2) to represent
i(d,−ℓ1) and δ(d,ℓ1:ℓ2), where i(d,−ℓ1) =

⋃
ℓ≤−ℓ1

δ(d,ℓ) and
δ(d,ℓ1:ℓ2) =

⋃
ℓ1≤ℓ≤ℓ2

δ(d,ℓ). Then, the square s-level extended
local submatrix A(d,s) has the following block structure:
(

A(i(−s−1), i(−s−1)) A(i(−s−1), δ(−s:−1))
A(δ(−s:−1), i(−s−1)) A(δ(−s:−1), δ(−s:−1)) A(δ(−s:−1), δ(1:s))

A(δ(1:s), δ(−s:−1)) A(δ(1:s), δ(1:s))

)
.

The global view of A(d,s) for two subdomains is shown in
Figure 8. For example, in the figure, A(1,s) consists of the
interior of subdomain 1, its s-level underlap and the edges to
the interior of subdomain 1, its s-level overlap and the edges to
the s-level underlap. Given |A| = n and

∣∣A(d,ℓ)
∣∣ = n(d,ℓ), we

define the standard rectangular n-by-n(d,0) extension matrix
(R(d,0))T with zeros and ones, which extends by zero the local
vector associated with vertices of the local submatrix A(d,0)

to form a global vector. The corresponding s-level variant
(R(d,s))T is defined in the same fashion. Correspondingly,
R(d,s) is the restriction matrix that restricts a vector from
the global domain to the s-level local subdomain. With that
notation, the restricted additive Schwarz preconditioner [4]
with s-level overlap becomes:

M−1
RAS =

ng∑

d=1

((R(d,0))T )(A(d,s))−1(R(d,s)),

where ng is the number of the non-overlapping subsets of the
row index set of A (i.e., the number of subdomains or GPUs).
By varying the amount of overlap at each iteration, we obtain
a sequence of s different preconditioners that we refer to as
the s-step preconditioner; at the k-th iteration, we have

(M (k)
RAS)

−1 =

ng∑

d=1

((R(d,0))T )(A(d,ℓ))−1(R(d,ℓ)),

where ℓ = s − k + 1 for k = 1, 2, . . . , s. This is similar
to the restricted additive Schwartz preconditioner. However,
the s-step preconditioner changes at each iteration, shrinking
both its underlap and overlap to match with the extended
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Name Source n nnz/n

G3 Circuit UF Collection 1, 585, 478 4.8
PDE 1M(α) Trilinos 1, 030, 301 26.5
PDE 10M(α) Trilinos 10, 218, 313 26.8
brick n Trilinos ∼ n ∼ 25

Fig. 9. Test Matrices.

local submatrix A(d,ℓ) of MPK. While the restriction operator
changes accordingly, the extension operator uses the same non-
overlapping extension operator allowing unique updates from
the sub-domains. It is easy to see that in the special case of
s = 0, the s-step preconditioner reduces to the block Jacobi
preconditioner.

In order to use the above framework as a stationary precon-
ditioner for CA-GMRES, we need to provide a consistent view
of the preconditioner both across subdomains (for correctness)
and across iterations (for being stationary). To be consistent
across subdomains, our implementation considers only the
diagonal blocks of A(d,s) and uses diagonal preconditioning
for the two diagonal blocks A(δ(−s:−1), δ(−s:−1)) on the
underlap and A(δ(1:s), δ(1:s)) on the overlap. Then, to be
consistent across iterations, we use a constant underlap s.
Hence, at the k-th iteration, our underlap preconditioner is
defined as

(M (k)
UN )−1 =

ng∑

d=1

((R(d,0))T )(Â(d,ℓ))−1(R(d,ℓ)),

where ℓ = s− k + 1 for k = 1, 2, . . . , s, and

Â(d,ℓ) =

(
A(i(−s−1), i(−s−1))

diag(A(δ−s:ℓ), δ(−s:ℓ)))

)
.

The restriction operator still shrinks the overlap not to incur
CA-GMRES any additional communication cost.

In summary, our underlap preconditioner is a special case
of the s-step domain decomposition preconditioner outlined
above. Since we use diagonal preconditioners for both the
underlap and overlap regions, an equivalent formulation of the
local preconditioner M (d,s)

UN corresponding to Â(d,s) is

M (d,s)
UN =

(
A(i(−s−1), i(−s−1))

diag(A(δ(−s:−1), δ(−s:−1)))

)
.

One may use any traditional local subdomain preconditioner
for an inexact solution of A(i(−s−1), i(−s−1)), including in-
complete factorizations or a fixed number of iterations of a sta-
tionary method such as Jacobi or Gauss-Seidel. This formula
defines the preconditioner’s action on each local subdomain.
In addition, at the k-th iteration, each processor redundantly
computes the diagonal preconditioner’s action on the ℓ-level
overlap δ(1:ℓ) in a shrinking fashion. Mathematically, the
preconditioner is fixed; it does not change across iterations.

B. Experimental Setup

We tested two matrix reordering algorithms to distribute the
matrix A among the GPUs: reverse Cuthill-McKee (RCM) [6]
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Fig. 10. Condition Number of Gram Matrix, G3_Circuit matrix, 6 GPUs.

from HSL3, and k-way graph partitioning (KWY) from
METIS4. With RCM, after reordering, we distribute the matrix
so that each GPU has about an equal number of rows. As the
local solver for our underlapping preconditioner, we investi-
gated stationary iterative methods (Jacobi or Gauss-Seidel),
the level or drop-tolerance based incomplete LU factorization,
ILU(k) or ILU(τ ), respectively, of ITSOL5, and the sparse
approximate inverse (SAI) of ParaSails6. Each MPI process
independently computes its local preconditioner on the CPU
and copies it to the GPU. Then, at each iteration, the MPI
process applies the preconditioner (Preco) using cuSPARSE’s
sparse-matrix vector multiplies or sparse triangular solves in
the Compressed Sparse Row (CSR) matrix storage format.
It performs sparse matrix-vector multiplies (SpMV) with the
matrix A using our own GPU kernel in the ELLPACKT for-
mat [17]. To maintain orthogonality, we always orthogonalize
the basis vectors twice. We consider the computed solution to
have converged when the residual ℓ2-norm is reduced by at
least twelve orders of magnitude.

Figure 9 shows the properties of the test matrices used for
our experiments. The G3_Circuit matrix comes from a
circuit simulation problem. Such matrices are difficult to pre-
condition; doing so effectively is current research. The “PDE”
problem comes from a scaling example in the TrilinosCou-
plings package of the Trilinos library. It arises from discretiz-
ing Poisson’s equation with Dirichlet boundaries on a cube Ω,
using a regular hexahedral mesh. The PDE is div(T∇u) = f
in Ω, u = g on ∂Ω, where T is a 3-by-3 material tensor,
and f and g are given functions. Discretizing results in a
linear system Ax = b, which is symmetric as long as T is.

We set T =

⎛

⎝
1 0 α
0 1 0
α 0 1

⎞

⎠ and control the iteration count by

varying α. When α = 0, the problem takes few iterations.
As α approaches 1, the problem takes more. For α > 1, the

3http://www.hsl.rl.ac.uk/catalogue/mc60.xml
4http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
5http://www-users.cs.umn.edu/∼saad/software/ITSOL/index.html
6http://computation.llnl.gov/casc/parasails/parasails.html
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Fig. 11. Solution Convergence, using Different Domain Decomposition
Preconditioners with Local ILU(0)’s on 6 GPUs.

matrix A is no longer positive definite. We present results for
different values of α.

In our experiments, we used the parameters which gave
good performance of CA-GMRES without preconditioning in
the previous experiments (m = 20 ∼ 60 and s = 1 ∼ 5) [17].
In many cases, this step size s gave good performance even
with our preconditioner. However, for some problems, the iter-
ation count of preconditioned CA-GMRES increased quickly
as the number of subdomains increased. Hence, we reduced
the step size to obtain more consistent reduction in the iteration
count over a large number of subdomains.

To enhance CA-GMRES’ numerical stability, before solv-
ing, we equilibrate A and b [9]. That is, we first scale its rows,
and then its columns, by their∞-norms. We also use a Newton
basis q:,k+1 = (AM−1−θkI)q:,k, where the shifts θk are the
eigenvalues of the first restart’s Hessenberg matrix H , in a Leja
order [2]. Figure 10 shows the condition number of the Gram
matrices generated during CholQR for the G3_Circuit
matrix using CA-GMRES(ŝ, s,m). These condition numbers
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(a) CA-GMRES(1, 20), for the PDE_1M(0.0) matrix.
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(b) CA-GMRES(2, 20), for the PDE_1M(0.0) matrix.

Fig. 12. Solution Convergence, using Different Local Solvers for an
Underlapping Preconditioner on 6 GPUs.

are the square of the condition numbers of the basis vectors
generated by MPK (see Section III-C). The figure shows that
equilibration, using the Newton basis, and preconditioning all
improve the condition numbers. While in our experiments,
we used the same step size and orthogonalization parameters
for testing CA-GMRES with and without preconditioning, we
could potentially use a larger s or omit reorthogonalization
when preconditioning. This may significantly increase the
benefit of preconditioning.

C. Convergence Studies with a Fixed GPU Count

Figure 11 compares convergence history of the relative
residual norm ∥b − Ax̂∥2/∥b∥2, using different precondi-
tioners on six GPUs, where “overlap” preconditioners refer
to restricted additive Schwarz preconditioners, and the local
solver is level-based ILU(0). For instance, for the PDE matrix
in Figure 11(a), as expected, a larger overlap reduced the
number of iterations required for the solution convergence,
while a larger underlap increased it. However, either an overlap

940



1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
0

200

400

600

800

1000

1200

1400

1600

1800

Number of GPUs

N
u

m
b

e
r 

o
f 

R
e

st
a

rt
s

 

 

GMRES(30)
CA−GMRES(4,8,30)
CA−GMRES(4,10,30)
CA−GMRES(1,1,30), precond
CA−GMRES(1,8,30), precond
CA−GMRES(1,10,30), precond

(a) Number of Restarts.

1 3 6 9 12 15 18 21 24 27 30

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Number of GPUs

S
p

e
e

d
u

p
s

 

 

CA−GMRES(4,8,30)
GMRES(30)
CA−GMRES(1,8,30), precond

(b) Average Restart Time (over CA-GMRES on One GPU).

Fig. 13. Parallel Strong Scaling Performance on Distributed GPUs of CA-
GMRES using an Underlapping Preconditioner with Local ILU(0)’s, for the
G3_Circuit matrix.

or underlap preconditioner significantly reduced the iteration
count. In addition, CA-GMRES’ convergence matches that of
GMRES. For the G3_Circuit matrix, Figure 11(b) shows
similar results, but for this more ill-conditioned system, the
reduction in the iteration count was much greater.

Figure 12 shows convergence, when we used different
local solvers in combination with our underlapping precon-
ditioner on six GPUs. For instance, we considered Jacobi
iteration as a local solver, because on both CPUs and (esp.)
GPUs, the sparse triangular solve that ILU requires is often
much slower than the SpMV that MPK or Jacobi uses (see
Section IV-D). Unfortunately, even for this relatively well-
conditioned system, in order to match ILU(0)’s convergence,
the Jacobi method required many iterations when s = 1,
and it did not converge when s = 2. Even though Gauss-
Seidel needed fewer iterations, the iteration count was still
large, especially considering that each Gauss-Seidel iteration
performs a (forward) triangular solve. Only the sparse approxi-

mate inverse (SAI) was competitive with ILU(0) on this small
number of GPUs. However, SAI may not be effective on a
larger number of GPUs, or for an ill-conditioned system such
as the G3_Circuit matrix.

D. Parallel Scaling Studies
We first examine the performance of our underlapping pre-

conditioner for the G3_Circuit matrix. This is a relatively
ill-conditioned system and a sparse approximate inverse is not
an effective preconditioner. Hence, we used ILU(0) as our
local solver. The performance of cuSPARSE’s sparse triangular
solver depends strongly on the sparsity pattern of the triangular
factor [11]. For our experiments, we first used a k-way graph
partitioning to distribute the matrix among the GPUs, and each
local submatrix is then reordered using a nested dissection
algorithm. We have observed that the performance of the
triangular solver can be significantly improved using the nested
dissection ordering (e.g., a speedup of 1.56). Figure 14(a)
shows the breakdown of the average time spent in one restart
loop. Even with the nested dissection ordering, though Preco
performs fewer floating-point operations than MPK, Preco
required significantly longer time since the triangular solution
is inherently serial (e.g., by a factor of 4.67, where MPK
includes the setup time). As a result, Figure 13(b) shows
that the time per iteration was significantly longer using the
underlap preconditioner (e.g., by a factor of 3.41). However,
Figure 13(a) shows that the preconditioner significantly re-
duced the iteration count, and Figure 14(b) illustrates that
the total solution time was also greatly reduced using the
preconditioner (e.g., by a factor of 2.95). Figure 16 shows the
detailed performance results including the time and iteration
count for the G3_Circuit matrix on up to 30 GPUs.

Compared to the G3_Circuit matrix, our PDE matrices
are relatively well-conditioned, and SAI(0) is often effective
as the local solver. Figure 15(a) shows the average breakdown
of the restart loop time for the PDE problem. The time
to apply the SAI(0) preconditioner was about the same as
that of SpMV with the local submatrix and was significantly
shorter than that of the sparse triangular solve required by
ILU(0) (see Figure 14(a)). This can be seen from the relatively
similar preconditioner apply times, compared to the SpMV
time, in Figure 15(a). As a result, compared with Figure 14(b)
for the G3_Circuit matrix, Figure 15(b) shows greater
speedups obtained using the underlap preconditioner for the
PDE matrices (e.g., by a factor 7.4).

Figure 17 shows the detailed performance profiles with
different PDE matrices both in terms of the size and in terms
of difficulty to solve, on up to 27 GPUs. The PDE_1M(0.0)
matrix is positive definite, while the PDE_1M(1.0275)
matrix is indefinite. In order to accelerate the converge for
this indefinite problem, compared to m = 20 used for
α = 0.0, a larger restart length of m = 60 was used when
α = 1.0275. To accomodate the large CPU memory required
to set up the PDE_10M matrices, we launched one MPI
per node and let each process manage three GPUs on the
node. The figure also shows that CA-GMRES with underlap
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Fig. 14. Parallel Strong Scaling Performance on Distributed GPUs of GM-
RES, CA-GMRES, and CA-GMRES using an Underlapping Preconditioner
with Local ILU(0)’s, for the G3_Circuit matrix.

preconditioner improves the performance over GMRES with
the same preconditioner (e.g., by a factor of 1.7). We expect
that this improvement will increase on a computer where the
communication between the parallel processes or threads is
more dominant and for larger problem sizes.

We emphasize that the matrix A’s distribution over the
GPUs not only affects CA-GMRES’ performance (e.g., stor-
age, computation, and communication overheads associated
with s-step overlap), but it also determines the preconditioner’s
effectiveness (e.g., the size of the s-step underlap). For the
PDE matrices presented here, we distributed the matrix over
GPUs using k-way graph partitioning. In contrast, when we
used RCM ordering, the sizes of both overlap and underlap
increased quickly with the number of subdomains. As a result,
even on few (e.g., 21) GPUs, some underlaps extended all the
way inside the local subdomains, and the local preconditioners
became diagonal scaling. Hence, on a larger number of sub-
domains, not only did the computational and communication
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(a) Breakdown of Average Restart Time, CA-GMRES(1, 10, 60).
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Fig. 15. Parallel Strong Scaling Performance on Distributed GPUs of GM-
RES, CA-GMRES, and CA-GMRES using an Underlapping Preconditioner
with Local SAI(0)’s, for the PDE_1M(1.0275) matrix.

overheads of CA-GMRES increase, but also the number of
iterations increased quickly. This led to a quick reduction in
speedups gained using the underlap preconditioner on a larger
number of GPUs.

V. CONCLUSION

This paper presents our implementation of CA-GMRES on
a hybrid CPU/GPU cluster and demonstrates speedups of up
to 2.5x over standard GMRES on up to 120 GPUs. We also
proposed a novel framework based on domain decomposition
to precondition CA Krylov methods, which allowed us to
use existing software libraries for local preconditioning. Even
when our implementation of this framework used simple
ILU(0) and SAI(0) preconditioners to solve on each GPU’s
domain, the number of GMRES iterations was greatly reduced.
As a result our preconditioned CA-GMRES was able to
achieve speedups of up to 7.4x in total solution time over CA-
GMRES and up to a 1.7x speedup in total solution time over

942



Number of GPUs 1 3 6 9 12 15 18 21 24 27 30
GMRES(30) 326 (813) 168 (1212) 73 (1001) 53 (1033) 48 (1159) 31 (889) 19 (601) 19 (680) 22 (840) 17 (713) 15 (669)
CA-GMRES(6, 30) 347 (1026) 116 (995) 142 (2257) 44 (1001) 26 (712) 29 (970) 23 (860) 25 (1027) 19 (823) 25 (1154) 19 (939)
CA-GMRES(8, 30) 202 (691) 89 (884) 39 (722) 42 (1131) 25 (795) 20 (774) 14 (602) 19 (947) 16 (824) 12 (665) 14 (773)
CA-GMRES(10, 30) 183 (760) 96 (1155) 45 (1011) 34 (1094) 17 (649) 22 (1007) 13 (640) 16 (918) 12 (739) 10 (627) 12 (776)
CA-GMRES(1, 1, 30)+ILU(0) 316 (158) 126 (183) 70 (187) 44 (169) 46 (212) 35 (194) 26 (167) 23 (159) 18 (136) 21 (160) 30 (233)
CA-GMRES(1, 8, 30)+ILU(0) 105 (162) 40 (175) 25 (201) 15 (167) 15 (197) 11 (166) 8 (139) 8 (150) 8 (151) 9 (187) 11 (211)
CA-GMERS(1, 10, 30)+ILU(0) 85 (143) 39 (187) 18 (154) 15 (173) 18 (249) 13 (217) 10 (200) 9 (174) 7 (156) 9 (190) 11 (225)

Fig. 16. Total Solution Time in Seconds (Number of Restarts), using an Underlapping Preconditioner with Local ILU(0)’s, and a Global k-way Partition
and a Local Nested Dissection Ordering, for the G3_Circuit matrix. The seconds are rounded to the nearest integer.

Number of GPUs 1 3 9 15 21 27 1 3 9 15 21 27

GMRES(20) 11 (41) 3.22 (41) 1.37 (41) 1.04 (41) 0.98 (41) 0.92 (41) 2911 (2558) 847 (2449) 364 (2726) 228 (2492) 195 (2676) 164 (2566)
GMRES(20)+SAI(0), s = 1 7 (17) 1.84 (16) 0.82 (18) 0.67 (20) 0.63 (23) 0.55 (22) 686 (463) 130 (292) 66 (400) 40 (353) 28 (318) 21 (278)
CA-GMRES(2, 10, 20) 8 (41) 2.29 (41) 1.00 (41) 0.81 (41) 0.61 (41) 0.59 (41) 1780 (2558) 496 (2449) 227 (2726) 149 (2492) 127 (2676) 109 (2566)
CA-GMRES(1, 10, 20)+SAI(0) 6 (17) 1.56 (16) 0.68 (18) 0.55 (20) 0.51 (23) 0.43 (22) 493 (463) 97 (312) 55 (462) 21 (259) 24 (377) 20 (359)
CA-GMRES(2, 10, 20)+SAI(0) 6 (17) 1.92 (20) 0.76 (20) 0.66 (25) 0.55 (25) 0.53 (26) 492 (463) 109 (351) 45 (387) 37 (454) 28 (450) 38 (672)

(a) PDE_1M(0.0) (left, m = 20) and PDE_1M(1.0275) (right, m = 60) matrices.

Number of GPUs 3 9 15 21 27 3 9 15 21 27

GMRES(40) 81 (44) 29 (44) 19 (44) 16 (44) 13 (44) 126 (68) 45 (68) 28 (68) 22 (68) 18 (68)
GMRES(40)+SAI(0), s = 1 49 (19) 17 (19) 11 (20) 9 (21) 7 (22) 82 (32) 29 (33) 15 (28) 14 (35) 11 (35)
CA-GMRES(2, 10, 40) 55 (44) 21 (44) 14 (44) 11 (44) 10 (44) 86 (68) 31 (68) 20 (68) 15 (68) 14 (68)
CA-GMRES(1, 10, 40)+SAI(0) 39 (19) 13 (19) 9 (20) 7 (21) 6 (22) 65 (32) 23 (33) 12 (28) 11 (35) 9 (35)

(b) PDE_10M(0.0) (left) and PDE_10M(1.0) (right) matrices.

Fig. 17. Total Solution Time in Seconds (Number of Restarts), using an Underlapping Preconditioner with Local SAI(0)’s and a Global k-way Graph
Partitioning, for the PDE matrices. Seconds are rounded to the nearest integer for clarity where appropriate.

preconditioned GMRES on a GPU cluster. This showed the
proposed framework’s potential for effectively preconditioning
CA Krylov methods. We continue to explore ways to improve
our framework’s performance. For instance, since the same
parameter s is used for the basis size in MPK and the
subdomain underlap in Preco, there is a trade-off between
reducing communication and increasing the iteration count
as s varies. To address this issue, we are investigating other
techniques to precondition the underlap or overlap regions,
and a more flexible way of preconditioning the CA methods.
We are also working to improve the performance of our CA-
GMRES on a hybrid CPU/GPU cluster by exploiting both
CPUs and GPUs, and by adaptively adjusting parameters
such as the step size. We are also working on a production
version of the communication avoiding solver that will be
made available in the Belos package [?] in Trilinos.
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